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Abstract. We propose a fast and efficient technique to create classes of highly

entangled states of trapped ions, such as arbitrary Dicke states and superpositions

of them, e.g. NOON states. The ions are initialized in the phonon ground state and

are addressed globally with a composite pulse that is resonant with the first motional

sideband. The technique operates on comparatively short time scales, as resonant

interactions allow one to use the minimum laser pulse area. The number of single pulses

from the composite sequence is equal to the number of ions, thus the implementation

complexity grows only linearly with the size of the system. The approach does not

require individual addressing of the ions in the trap and can be applied both inside

and outside the Lamb-Dicke regime.
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1. Introduction

Entanglement is the most distinctive feature of quantum states involving many particles.

Within the framework of quantum information science, it may be viewed as a

resource for the processing of information in ways not permitted by classical logic

[1]. Entanglement has various physical applications such as dense coding, quantum

teleportation, quantum cryptography, quantum metrology, etc. [2], which are essential

for quantum communication and information processing (QIP). It is indisputable that

entanglement plays a key role in QIP as quantum computers are implemented by many-

body systems, generally characterized by multi-partite entangled states. Since the

primary resource for quantum computation is a Hilbert-space dimension, which grows

exponentially with the available physical resources [3], the benefits of a quantum over a

classical computation increase with the size of the physical system. This has inspired an

intensive research aiming to create and study the properties of multi-partite entangled

states.

A very prominent class of such states are Dicke states |WN
n 〉, originally introduced

in [4]. They contain a given number of excitations n (qubits in state |1〉) shared evenly

amongst all N qubits:

|WN
n 〉 = 1√

CN
n

∑

k

Pk| 1, . . . , 1︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
N−n

〉, (1)

where Pk denote the set of all permutations of the excitations and CN
n ≡

N !/ [n!(N − n)!]. Notably, Dicke states are immune against collective dephasing, which

is a dominant source of decoherence in various systems, such as trapped ions [5].

Therefore, while still offering exponential dimensionality (of CN
N/2 ≈ 2N/

√
πN/2,

example for n = N/2), the Dicke manifold can be used as a decoherence-free

computational subspace, as in [6]. Dicke states generalize W states, which can be used

for quantum communication [7]. Furthermore, Dicke states exhibit genuine multi-partite

entanglement [8], which is robust against particle loss and is highly resilient vs external

perturbations and measurements on single qubits [9]. Thus, Dicke states can serve

as a versatile resource for the preparation of multiparticle entangled states; through

projective measurements on some of the qubits one can obtain states from various

entanglement classes. Due to their robust entanglement, these states are particularly

well suited for the experimental examination of multi-partite entanglement and can be

used to test fundamental concepts of quantum mechanics.

Theoretical proposals exist for the generation of Dicke states in a number of physical

systems, including ensembles of neutral atoms [10], trapped ions [11, 12], quantum dots

[13] and using linear optics [14]. Of these ion traps are perhaps the best suited for

their unparalleled level of experimental control. We notice, however, that the existing

trapped-ion proposals possess one or a combination of the following drawbacks: (1) they

cannot create arbitrary but only particular Dicke states, and thus do not offer a general

approach; (2) individual ion addressing is required, which poses significant experimental
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challenges to scalability; (3) the number of physical interactions needed scales very fast

with the system size; (4) initialization in a particular Fock state is required; (5) Dicke

states are achieved with some probability and post selection is required; (6) adiabatic

techniques require in general very long interaction times. Consequently, extending the

proposed techniques for larger system sizes remains a formidable challenge.

In this paper, we take a different approach and propose a simple, general and very

efficient technique for the creation of a large class of highly entangled states in systems

of trapped ions. These can be arbitrary Dicke states and any superposition of these,

such as NOON states, which are invariant, up to a phase, under the exchange of any

two ions. Besides its generality, the proposed technique is particularly advantageous

due to several features. It uses composite pulse sequences – a series of laser pulses,

each with a particular area and phase. Composite pulses are a conceptually simple

and very powerful control tool, which enjoys large popularity in experimental physics.

Though they were first developed for the needs of NMR, they were successfully applied in

trapped-ion systems where many major accomplishments have been made, for example

in the field of quantum information processing [15]. Their simplicity and efficacy in

controlling quantum systems stem from the basic physical notion of interference. Thus,

using specially designed composite pulses, our technique requires much fewer interaction

steps compared to the traditional approaches, exploiting quantum circuits of a vast

number of concatenated one- and two-qubit gates: the number of pulses in our approach

is equal to the number of ions. Therefore it grows only linearly with the system size,

thus offering only moderate levels of experimental complexity. Another advantage of

our method is that it assumes collective interaction with all ions and does not require

to manipulate exclusively individual ions or pairs of such with focused laser beams,

which often presents a principal experimental challenge. The laser fields are resonant

with the first motional sideband transition of the ions, which results in short interaction

times, as opposed to adiabatic techniques. Our technique is applicable also outside the

Lamb-Dicke regime. This offers the potential to overcome various detrimental effects,

such as light shifts and off-resonant excitations [16], which might occur in experimental

implementations.

2. Model

2.1. Hamiltonian

We consider N ions confined in a linear Paul trap, which are cooled to their vibrational

ground state. Each ion has two relevant internal states |0〉 and |1〉, with respective

transition frequency ω0. The linear ion crystal interacts uniformly with a laser pulse

tuned on one of the sidebands of the (longitudinal) center-of-mass mode, with frequency

ωL = ω0 ± ωtr, where ωtr is the axial trap frequency. The plus sign stands for the blue

sideband, while the minus sign is for the red sideband. After making the optical and

vibrational rotating-wave approximations, the interaction Hamiltonian in the interaction
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representation for the red and blue sidebands, respectively, has the form [17]

ĤI,R =
1

2
~g(t)â(η)Ĵ+ +H.c., (2a)

ĤI,B =
1

2
~g(t)â†(η)Ĵ+ +H.c., (2b)

where g(t) = ηΩ(t) exp(−η2/2)/
√
N is the coupling of the internal atomic states to

the vibrational mode, producing pulse area A =
∫∞

−∞
g(t)dt, η is the single-ion Lamb-

Dicke parameter, Ω(t) is the real-valued time-dependent Rabi frequency. Here â(η) =∑∞

n=0
(n+1)−1/2L1

n(η
2)|n〉〈n+1| and â†(η) = [â(η)]† are the phonon lowering and raising

operators, La
n(x) being the generalized Laguerre polynomial. Ĵ± =

∑N
k=1

e±iϕkσ±
k , where

ϕk is the phase of the laser field interacting with the kth ion, and σ+

k = |1k〉〈0k| and
σ−
k = |0k〉〈1k| are the raising and lowering operators for the internal states of the kth

ion. In the Lamb-Dicke limit the operators â†(η) and â(η) become the ordinary creation

and annihilation operators of the center-of-mass phonons.

We now perform the transformation |1k〉 → |1̃k〉e−iϕk , thereby incorporating the

laser phase into the atomic states. As a result, the Hamiltonian is recast in terms of the

usual pseudospin operators Ĵ± =
∑N

k=1
σ̃±
k . The energy pattern splits into manifolds

corresponding to n atomic and ν motional excitations, Fig. 1(a). For red-sideband

interaction we have n+ ν = mR, i.e. the total number of quanta mR is conserved, while

for blue sideband we have n−ν = mB, i.e. the difference of the quanta is conserved. To

create symmetric entangled states a suitable choice is mR = N and mB = 0. Though

our method is equally applicable for both, in what follows we will assume blue-sideband

interaction.

Figure 1(a) depicts all states, which are accessible if one starts from the ground

state |000〉|0〉. The example given is for a chain of N = 3 ions. The ions interact with a

blue-sideband laser field, ωL = ω0 + ωtr, which couples equally each ion’s internal state

to the collective motional center-of-mass mode: |0k〉|ν〉 ↔ |1k〉|ν + 1〉. The system is

described by the anti-Jaynes-Cummings Hamiltonian (2b). To this end, we adopt the

wavefunction notation |ψ〉|ν〉, where |ψ〉 = |q1q2 · · · qn+1〉 is the collective internal state

of the ion qubits, with qk = 0 or 1, and |ν〉 is the vibrational Fock state of ν phonons.

2.2. Hilbert space factorization

In order to study the dynamics of our system, it is convenient to introduce a new basis,

which consists of the set of eigenvectors of the two commuting pseudospin operators

Ĵ2 and Ĵz, where Ĵ
2 = 1

2
(Ĵ+Ĵ− + Ĵ−Ĵ+) + Ĵ2

z . Each state is assigned two quantum

numbers, j and mj, respectively. Since Ĵ2 commutes with the Hamiltonian, the

Hilbert space factorizes into a set of decoupled chains with different values of j; the

Hamiltonian preserves j. The meaning of this becomes more transparent if we notice

that Ĵ2 =
∑N

k,l=1

1

2
Skl − 1

4
(−1)δkl1, with Skl = σ+

k σ
−
l + σ−

k σ
+

l + 1

2
σk,zσl,z +

1

2
(−1)δkl1

denoting the action of the swapping operator, which exchanges ions k and l. Therefore,

each j stands for a particular symmetry with respect to exchanging ions. Since our class

of target states is invariant under the action of each Skl, it comprises the eigenstates of
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a) b)

Figure 1. (a) Linkage pattern of the collective states of N = 3 trapped ions equally

coupled to their common center-of-mass mode by a uniform laser field. The difference

between the number of ionic excitations n and the number of vibrational phonons ν = n

is conserved. The laser beam is tuned to the blue-sideband resonance, ωL = ω0 + ωtr.

(b) Chains comprising symmetric Dicke states |WN
n 〉|ν〉 for N = 3. These constitute

the whole set of states that can be accessed by a uniform laser driving starting from

the state |00 · · · 0〉|0〉. The states are coupled resonantly on the first blue sideband with

λν−1,ν(t) being the coupling strengths.

Skl with unit eigenvalue. Thus the eigenvalue of Ĵ2 is (1 +N/2)N/2. Hence, the chain

containing our states is assigned j = N/2, and by analogy with the traditional angular

momentum operators, the number of states is equal to 2j + 1 = N + 1. These are all

Dicke states |WN
n 〉|ν〉, with n being the number of atomic excitations: n = 0, . . . , N .

Hence, all states we are interested in are contained in a single chain, and are coupled by

the Hamiltonian (2b) in the order given (Fig. 1(b)). As long as the interaction with the

ions is distributed uniformly, the dynamics is enclosed in this chain as it gets decoupled

from the rest of the Hilbert space. The states differ by energy, which is measured by

the operator Ĵz. Its eigenvalues mj vary from −j to j and define the number of excited

ions, n = j +mj = N/2 +mj .

For the following analysis, it will be necessary to go further and calculate the

coupling coefficients in the new basis. The coupling between the neighbors |j,mj〉 and
|j,mj − 1〉 follows immediately from the matrix elements of the operators â†(η), â(η)

and Ĵ±:

λν−1,ν(t) = g(t)L1

ν−1(η
2)
√
N − ν + 1. (3)

In the following, for conciseness we will consider only operation inside the Lamb-

Dicke regime, which requires η ≪ 1.
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3. Implementation

Our method begins with the initialization of the string ofN ions in the collective internal

and vibrational ground state |ψ〉|ν〉 = |00 · · ·0〉|0〉 [18]. For ease of notation, the indices
in |ψ〉 denoting states will be omitted hereafter.

3.1. Creation of Dicke states

The N -ion Dicke states |WN
n 〉|ν〉 are constructed in the following way. A series of

N pulses is applied globally on all ions, each pulse having a particular area Ak and

phase φk. The pulses are resonant with the first blue sideband relative to the center-

of-mass (COM) mode, i.e. the carrier frequencies are ωL = ω0 + ωtr. Thereby the state

|00 · · ·0〉|0〉 is coupled to all states |WN
n 〉|n〉, shown in Fig. 1 (b). If other modes are

used, one would connect states of another symmetry. Because resonant interactions are

employed, the dynamics is defined only by the pulse areas Ak and does not depend on

the temporal pulse shape.

To study the effect of this interaction we derive the propagator U(Ak, φk) describing

the dynamics of the chain of Dicke states (Fig. 1(b)), subject to a laser pulse of area

Ak and phase φk. This is done by exact diagonalization and exponentiation of the

Hamiltonian, U(Ak, φk) = exp
(
− i

~

∫
ĤI,Bdt

)
, with the coupling in ĤI,B being phased,

g(t) → g(t)eiφk . The total sequence of N pulses, having area Atot =
∑N

k=1
Ak, is

represented by the propagator

Utot = U(AN , φN)U(AN−1, φN−1) · · ·U(A1, φ1). (4)

We fix φ1 = 0, which defines our phase reference. Hence, the total propagator Utot is

defined by N pulse areas and N − 1 phases, a total of 2N − 1 variables, which can be

varied as free parameters.

Dicke states, or various superpositions of these, are obtained for specific sets of

parameters, which are determined numerically through maximizing the fidelity with the

target state |t〉, seeking unity. The fidelity is defined as

F(Ak, φk, t) = |〈t|Utot|00 · · ·0〉|0〉|2 (5)

and is a function of all areas Ak and phases φk. The numerical optimization procedure

runs over the 2N−1 dimensional space of Ak and φk and follows Newton’s gradient-based

method. Because this is a local optimization algorithm, we iteratively pick the initial

parameter values using the Monte-Carlo scheme. Out of the many solutions obtained,

we select the one having the minimal total pulse area Atot.

The numerical optimization is computationally not difficult even beyond N = 15

ions, even though the dimension of the Hilbert space scales exponentially with N . The

reason is that the system resides only in the chain of symmetric states of dimension

N + 1, shown in Fig. 1 (b).

In Table 1 we provide examples of pulse sequences, which yield Dicke states |WN
n 〉

for different number of ions N . We choose n = ⌊N/2⌋, ⌊x⌋ being the integer part of
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Dicke states, |WN
n 〉

N Atot (A1, φ1; A2, φ2; . . . ; AN , φN)

3 2.53 (0.369, 0; 0.484, 2.39; 1.682, 2.976)

4 2.28 (0.805, 0; 0.495, 1.728; 0.793, 0.566; 0.191, 0.079)

5 2.11 (0.795, 0; 0.278, 0.403; 0.480, 0.075; 0.223, 0.309;

0.333, 0.915)

6 2.12 (0.562, 0; 0.315, 1.478; 0.343, 0.854; 0.277, 0.417;

0.126, 0.091; 0.501, 1.423)

7 2.15 (0.107, 0; 0.584, 1.694, 0.562, 1.566, 0.497, 1.313,

0.039, 1.956, 0.158, 1.301, 0.206, 1.847)

8 2.46 (0.539, 0; 0.216, 0.389; 0.459, 0.098; 0.251, 1.560;

0.464, 0.816; 0.25, 0.388; 0.25, 2.078; 0.03, 1.607)

9 3.35 (0.51, 0; 0.234, 0.83; 0.9, 0.304; 0.19, 2.025; 0.352,

0.164; 0.379, 0.556; 0.358, 0.097; 0.199, 0.239;

0.231, 0.471)

10 3.89 (0.621, 0; 0.367, 1.147; 0.097, 0.994; 0.616, 1.709;

0.113, 0.263; 0.203, 0.661; 0.579, 0.328; 0.223, 0.831;

0.775, 0.909; 0.292, 0.462)

Table 1. Exemplary areas Ak and phases φk (in units of π) for composite pulse

sequences, which produce N -ion Dicke states |WN
n 〉. We choose n = ⌊N/2⌋, where

⌊x⌋ is the integer part of x. The composite sequences are described by the propagator

(4) and comprise N phased pulses, tuned on the first blue sideband. It is noteworthy

that for increasing values of N the total pulse area Atot is less than (N/2)π (we have

checked that this property holds also for N > 10).

x. In a real experiment one may not be able to set the control parameters exactly

as prescribed by Table 1. The fluctuations around the optimal values would result in

a decrease of the fidelity. We have investigated this scenario and the result is shown

in Figure 2 (top), which illustrates the final fidelity for different Dicke states vs the

standard deviations of the control parameters Ak and φk. It is noteworthy that the

calculated fidelity stays well above 95% for deviations of the order of 1%, which are

typical for the present state-of-the-art technology [19].

3.2. Creation of NOON states

We can also create arbitrary superpositions of the states contained in the chain of

accessible states, shown in Fig. 1(b). Of particular interest is the possibility to generate

NOON states |NN〉, which are another very important class of highly nonclassical

entangled states. They can be defined as an equal-probability superposition of two Dicke

states |WN
n 〉, whereby the excitation is contained either in the internal state or in the

motional state of the ions: |NN〉 = |WN
N 〉|0〉+|WN

0 〉|N〉 ≡ |11 · · ·1〉|0〉+|00 · · ·0〉|N〉 (for
simplicity, normalization constants are omitted throughout). The ions are maximally
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Figure 2. Fidelity for the creation of various Dicke (top) and NOON states (bottom)

vs the standard deviation in the control parameters Ak and φk, with k = 1, . . . , N .

The parameters are listed in Tables 1 and 2, respectively, and the numbers denote the

number of ions N .

correlated as measuring the state of one ion determines the state of all N ions.

Various applications of NOON states of both fundamental and practical interest

have been suggested, such as entanglement enhanced metrology and sub-wavelength

lithography [20, 21]. Different schemes for the creation of NOON states in trapped-

ion systems have been proposed theoretically [20, 22] and realized experimentally [23].

However, they are subject to requirements for individual ion addressing, limited number

of ions or long interaction times where adiabaticity is employed.

Unlike the previous proposals, our method allows us, by using global addressing, to

create arbitrary NOON states. As the interaction is resonant, the states are created on

short time scales. We perform the same manipulation as for the creation of Dicke states

– a sequence of laser pulses is applied, each addressing globally the chain of ions and

having a particular area Ak and a relative phase φk. The pulses are resonant with the

first blue-sideband transition. For particular pulse sequences one obtains the coherent

superposition |WN
0 〉|0〉 + |WN

N 〉|N〉. If we logically interchange |0〉 and |1〉, |0〉 ↔ |1〉,
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NOON states, |NN〉
N Atot (A1, φ1; A2, φ2; . . . ; AN , φN)

3 1.60 (0.696, 0; 0.640, 1.511; 0.259, 1.962)

4 1.63 (0.402, 0; 0.291, 0.151; 0.667, 1.819; 0.271, 1.465)

5 1.88 (0.494, 0; 0.249, 0.652; 0.651, 1.271; 0.313, 0.806;

0.175,1.175)

6 1.83 (0.284, 0; 0.235, 0.219; 0.099, 0.701; 0.673, 1.178;

0.403, 0.665; 0.136, 1.022)

7 2.06 (0.278, 0; 0.300, 0.266; 0.338, 0.034; 0.541, 1.895;

0.277, 2.138; 0.137, 0.662; 0.187, 0.070)

8 2.33 (0.259, 0; 0.923, 0.209; 0.346, 0.408; 0.428, 1.572;

0.003, 1.705; 0.204, 1.216; 0.003, 2.11; 0.162, 1.543)

9 2.46 (0.395, 0; 0.146, 2.556; 0.186, 1.336; 0.237, 1.854;

0.680, 0.740; 0.452, 1.660; 0.169, 0.862; 0.007,

0.222; 0.186, 1.555)

10 2.93 (0.476, 0; 0.239, 1.247; 0.289, 1.380; 0.256, 0.305;

0.228, 2.021; 0.415, 0.220; 0.388, 0.749; 0.059, 1.718;

0.529, 1.823; 0.047, 0.861)

Table 2. Exemplary areas Ak and phases φk (in units of π) for composite pulse

sequences, which produce N -ion NOON states |NN 〉. The sequences are described by

the propagator (4) and comprise N phased pulses, tuned on the first blue sideband. It

is noteworthy that for increasing values of N the total pulse area Atot is below (N/3)π

(we have checked that this property holds also for N > 10).

this state corresponds to the NOON state |NN〉.
In Table 2 we provide examples of pulse sequences, which yield NOON states |NN〉

for different number of ions N . Figure 2 (bottom) illustrates the final fidelity of various

NOON states vs the standard deviations of the control parameters Ak and φk. As for

the Dicke states, the calculated fidelity stays well above 95% for deviations of the order

of 1%.

3.3. Rate of creation of the target states

As already mentioned, the proposed technique operates on comparatively short time

scales. An estimate for the duration of the composite pulse sequences needed to create

our symmetric entangled states is given by Ttot = Atot/g. In order to suppress the

excitation of the extraneous phonon modes (other than the center-of-mass mode), we

limit the coupling strength from above to g = ωtr/10 [24]. If we assume a typical trap

frequency of ωtr = 4 MHz, as in [25], and Atot ≈ 2π as obtained in the above examples

for the creation of |W 6
3 〉 and |N6〉, we obtain Ttot ≈ 15µs. For comparison, in [?] the

Dicke state |W 6
2 〉 is created adiabatically in 400 µs.

Importantly, as can be seen from Tables 1 and 2, for increasing number of ions N the
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total pulse area Atot stays below (N/2)π for Dicke states and below (N/3)π for NOON

states. Therefore, the duration Ttot increases only linearly with N and is asymptotically

limited by (N/2)Tπ and (N/3)Tπ, respectively, Tπ ≈ 8µs being the duration of a π pulse.

4. Conclusions

We have proposed a simple and efficient technique for the creation of arbitrary collective

states of trapped ions, which are symmetric under exchange of any two ions. These can

be Dicke states and superpositions of these, such as NOON states. The method uses

dedicated composite sequences of phased resonant pulses tuned on the first red or blue

motional sideband of the center-of-mass mode. The composite sequences comprise N

pulses, N being the number of ions, thus the implementation complexity and duration

grow only linearly. This is in contrast to other proposals, which require a rapidly

increasing number of elementary gates, demanding exclusive interaction with single ions

or pairs of ions. As opposed to previous proposals, the ions are addressed globally,

thus individual ion access is unnecessary. Due to the resonant type of interaction and

because the required by our method total pulse area is as low as (N/2)π, the states are

created on a comparatively short time scale. The method is applicable also outside the

Lamb-Dicke regime.
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